Exploitation Analysis of CVE-2016-5764:
Stack-Based Buffer Overflow in Rumba FTP Client
4.2

Ayush Ravi Chandran
University of Massachusetts Amherst
Amherst, MA, USA
ayushravicha@umass.edu

Abstract—This paper presents a comprehensive security anal-
ysis of CVE-2016-5764, a critical stack-based buffer overflow
vulnerability in Micro Focus Rumba FTP Client version 4.2.
The vulnerability resides in the FtpOcx.ocx ActiveX control’s
directory listing parser (function FUN_1000aed0) and enables
arbitrary code execution through Structured Exception Handler
(SEH) overwrite when a victim connects to a malicious FTP
server. We document the complete exploitation chain including
vulnerability discovery, primitive development, SEH-based con-
trol flow hijacking, and payload construction. Through systematic
analysis using static (Ghidra) and dynamic (OllyDbg) tools, we
identify the root cause as an unbounded wcscpy operation during
Unicode string processing, demonstrate reliable exploitation on
Windows XP SP3, and assess the vulnerability’s resilience against
modern Windows security mechanisms. This research highlights
the persistent security risks of legacy client-side applications in
enterprise environments where mainframe connectivity remains
mission-critical.

I. INTRODUCTION

Micro Focus Rumba is a terminal emulation suite designed
for mainframe and midrange system connectivity. Rumba FTP
Client version 4.2, released between 2006 and 2008, is a
legacy version that was vulnerable to CVE-2016-5764 [2]]
until patched in version 4.5 (October 2016). While no longer
actively supported or distributed through official channels,
the study of this vulnerability provides educational value in
understanding fundamental exploitation techniques and the
evolution of Windows security mechanisms. The vulnerability
analysis demonstrates exploitation primitives: buffer overflow,
SEH overwrite, and shellcode execution. These remain rele-
vant for security education despite the software’s legacy status.

CVE-2016-5764, disclosed in October 2016 (with early
traces of detection dating back to 2010), represents a client-
side attack vector where victims connecting to attacker-
controlled FTP servers trigger a stack-based buffer over-
flow during directory listing processing. The vulnerability’s
significance extends beyond its technical characteristics. It
exemplifies the broader challenge of securing legacy software
that cannot be easily replaced due to enterprise dependencies
on decades-old technology stacks.

This paper provides a detailed technical analysis suitable
for academic understanding of fundamental exploitation tech-

Roberto Rubio Fernandez
University of Massachusetts Amherst
Ambherst, MA, USA
rrubiofernan @umass.edu

niques while documenting the security implications for real-
world enterprise deployments.

II. BUG OVERVIEW

A. Vulnerability Summary

The target application contains a stack-based buffer over-
flow vulnerability in its handling of FTP commands involv-
ing Unicode filenames. Specifically, an attacker-controlled
argument is copied into a fixed-size stack buffer without
adequate bounds checking after Unicode conversion, resulting
in memory corruption.

The vulnerability is remotely reachable and requires no
authentication, making it exploitable over the network via a
malformed FTP request.

B. Root Cause

The flaw arises from an unbounded wide-character string
copy operation using wcscpy. While user-supplied input
undergoes conversion from multibyte encoding to UTF-16
viaMultiByteToWideChar, the vulnerability occurs when
this converted string is copied into a fixed-size stack buffer
without bounds checking. The wcscpy function performs no
validation of the destination buffer size, allowing arbitrarily
large inputs to overflow beyond the 260-byte buffer boundary
and corrupt adjacent stack memory, including the SEH chain.

C. Attack Surface

The vulnerable code path is exposed through the FTP
service’s request parsing logic and can be triggered by sending
a specially crafted command containing an oversized filename
parameter. The exploit does not depend on timing, race con-
ditions, or heap state and is therefore highly reliable.

Attack Properties:

e Access Vector: Remote, network-based
« Privileges Required: None

o User Interaction: Low to None

« Exploit Complexity: Low

D. Exploitation Workflow

The attack requires minimal user interaction and leverages
the automatic behavior of FTP clients when establishing
connections.

Attacker Setup:

1) Deploy malicious FTP
rumba_exploit.pl
2) Server listens on port 21 (FTP control channel)

3) PASV data channel configured on port 31337

Victim Actions:

server: perl

1) Open Rumba FTP Client application
2) Enter connection parameters:

e Server Address: attacker-controlled IP
127.0.0.1 for local testing)

e Port: 21 (standard FTP)

o Credentials: anonymous (or any username)

3) Click “Go” button to connect
4) LIST command triggers automatically when directory
pane becomes visible

(e.g.,

Automatic Triggering:

Critically, the exploit does not require the user to explicitly
issue commands or download files. The Rumba FTP client
automatically sends a LIST command upon successful connec-
tion to populate the remote file browser pane. This behavior
occurs:

o When the remote directory pane has focus (default in
full-screen mode)

o When user clicks “Refresh” button

o When user navigates between folders or clicks Ul ele-
ments

This automatic behavior significantly lowers the exploita-
tion barrier, as users expect FTP clients to display directory
contents immediately upon connection.

PASV Mode:

The exploit leverages Passive (PASV) FTP mode, where the
client initiates the data connection to the server rather than vice
versa. This is the default mode in modern FTP clients and
circumvents firewall restrictions that would block incoming
connections to the client. The server responds to the PASV
command with:

227 Entering Passive Mode (127,0,0,1,122,105)

This instructs the client to connect to IP 127.0.0.1 on port
31337 (calculated as 122 x 256 + 105), where the malicious
directory listing is delivered.

E. Vulnerability Classification

Under the Common Weakness Enumeration (CWE), the bug
is classified as:

o CWE-121: Stack-based Buffer Overflow

III. INFRASTRUCTURE SETUP
A. Target Environment Configuration
Operating System:
o Windows XP Professional SP3 (32-bit)
Virtualization Platform:
e Oracle VirtualBox 7.0
e VM Configuration: 1 CPU core, 1IGB RAM, 20GB disk
o Network: NAT mode for internet access
Vulnerable Software:
e Rumba FTP Client 4.2
« Installation directory:
MicroFocus\Rumba\
o Key Files: FtpOcx.ocx,

C:\ProgramFiles\

ftplogic.dll
Exploit Server:

o Perl 5 (Strawberry Perl for Windows)
« Runs on Windows XP VM (localhost testing)

B. Debugging Environment

Static Analysis:

o Ghidra: Tool for reverse engineering and disassembly

o Analyzed modules: FtpOcx.ocx, ftplogic.dll

o Located vulnerable function and POP POP RET gadget
Dynamic Analysis:

o OllyDbg: User-mode debugger

o Set breakpoints at wescpy call site

« Memory inspection and single-stepping through exploit

C. Setup Challenges and Solutions

1) WinDbg Kernel Debugging Unusable:

Problem: Initial attempts to use WinDbg with kernel de-
bugging via named pipe caused the Windows XP GUI to
become completely unresponsive. While the kernel debugger
connected successfully, the Rumba FTP window appeared
in the taskbar but was not visible or interactive, preventing
exploit triggering. This is because kernel debugging halts the
entire operating system to allow inspection of kernel state.
This system-wide freeze makes it impossible to interact with
GUI applications or trigger network-based exploits that require
active connections.

Solution: Switched to OllyDbg user-mode debugger which
attaches only to the Rumba FTP process, leaving the rest of the
system operational. This allowed interactive debugging with
full GUI functionality.

Lesson Learned: Kernel debugging is appropriate for
device drivers, kernel exploits, and rootkit analysis but
unsuitable for user-mode application vulnerabilities requiring
interactive testing.

2) Socket Reuse (TIME_WAIT State):
Problem: After initial exploit test, subsequent attempts would
hang indefinitely. Investigation revealed the PASV data port
(31337) remained in TIME_WAIT state for 60 seconds after
closing, preventing the exploit server from rebinding.
Diagnosis:

I S

C:\> netstat -an | find "31337"

~ R

NOP SLED + Shelleode

TCP 0.0.0.0:31337 0.0.0.0:0 TIME WAIT
.] T Saved SEH Handler (FPOP POP RET) [ox4
Solution: Added ReuseAddr socket option to allow binding

to ports in TIME_WAIT state: NSEH = EB 06 A0 90 (JUMP 6 Bytes) [0x4
my $pasvsock = IO::Socket::INET->new (

LocalPort => $port, :Junk

(e

Listen => ’1’, 0x5497

ReuseAddr => 1 # Critical for reliability

)i

Impact: Improved testing iteration speed from once per 60
seconds to immediate re-testing.

IV. PRIMITIVE ANALYSIS
A. Exploitation Primitive Classification

The vulnerability provides a linear stack-based buffer over-
flow primitive with attacker-controlled input delivered over the
FTP data channel. The overflow occurs in a fixed-size stack
buffer during Unicode filename processing when displaying it
on the GUI and allows controlled overwrite of adjacent stack
structures. We specifically target the Structured Exception
Handler (SEH) on Windows.

SEH maintains a chain of exception handlers on the stack
for error recovery. When exceptions occur, Windows traverses
this chain calling each handler function. By overwriting the
SEH record with attacker-controlled addresses, we redirect
execution when the overflow triggers an access violation.
Windows invokes what it believes is a legitimate exception
handler but is actually our malicious code. This technique
bypasses stack canaries because the exception occurs before
function return, though it requires crashing the process to
trigger handler execution. The primitive provides sufficient
space for complex shellcode while maintaining reliable control
flow redirection. On the stack, we have pointers to nSEH
followed by the SEH.

B. Minimal Triggering Input

Although a single-byte overwrite beyond the 260-byte
buffer triggers memory corruption, reliable exploitation
requires reaching the SEH record located 1,352 bytes from
the buffer start. This is the malicious directory listing sent:
"—-rw-rw-r—-— 1 1176 1176 1060 Apr 23 23:17
test.$payload\r\n\r\n" with the following payload:

[1,351 bytes junk] -> Fill to NSEH
[4 bytes NSEH] -> Short jump (EB 06 90 90)
[4 bytes SEH] -> POP POP RET (0x1006E534)
[50 bytes NOPs] —> Landing zone

[300 bytes code] —-> Shellcode

Total: 1,709 bytes

C. Stack Layout at Crash

Figure [1| shows the complete stack layout during exploita-
tion:

Key Addresses:

« Buffer base: 0x0012F5F0

(1351 bytes)

widePath[130] (wehar_t buffer)
wesepy overflow starts here

\ J

Fig. 1. Stack Layout

e SEH record: 0x0012FB3C
« Effective offset: 0x54C (1,356 bytes)

Empirical testing confirmed that 1,351 bytes of padding fol-
lowed by a 4-byte NSEH overwrite reliably aligns execution.

D. Primitive Capabilities and Constraints
Capabilities:
e Overwrite SEH chain on stack
¢ Control exception handler address
o Control exception handler parameters (NSEH)
« Inject arbitrary code onto stack
Constraints:

o Size Amplification: ANSI input converted to Unicode
(doubles size)

e Protocol Formatting: Must maintain valid FTP directory
listing format

o Fixed Offset: SEH location determined by stack layout

E. Debugger Walkthrough

Rumba FTP client process was attached to OllyDbg prior
to connecting to the malicious FTP server.

Breakpoint Using Ghidra, the vulnerable function
FUN_1000aed0 within FtpOcx.ocx was identified as the
directory listing parser responsible for handling filenames. A
breakpoint was placed on the call to wcscpy.

When the program halts at this breakpoint, inspection of
registers and stack memory showed the destination buffer
located on the stack, while the source pointer referenced an
attacker-supplied Unicode string.

Single-stepping over the wcscpy instruction caused im-
mediate stack corruption. The injected payload was visually
confirmed by the repeating w characters in memory.

Verifying SEH Overwrite Continuing execution resulted in
an access violation, triggering Windows Structured Exception
Handling. Looking at the SEH chain at the time of the crash
confirmed the overflow had overwritten the Next SEH (NSEH)
and SEH. The NSEH field contained the short jump instruction
EB 06 90 90, and the SEH handler pointed to the attacker-
controlled POP POP RET gadget at address 0x1006E534 in
ftplogic.dll.

Later, after the gadget, the instruction pointer (EIP) was ob-
served executing from an address within the payload, showing
successful redirection of control flow.

Offset Determination Payloads with length less than 1,351
bytes resulted in stack corruption without SEH overwrite, so
this is the minimum input length required to reach and control
the SEH chain.

V. EXPLOITATION CHAIN ANALYSIS

A. Achieving the Primitive

The buffer overflow primitive is achieved through the fol-
lowing code execution path:

1) User connects to malicious FTP server

2) Rumba FTP automatically sends LIST command

3) Server responds

4) Client connects to PASV port 31337

5) Server sends malicious directory listing on data channel
6) FtpOcx.ocx receives listing and begins parsing

7) Function FUN_1000aedO processes filename field

8) wescpy copies large payload into 260-byte buffer

9) Stack corruption occurs, SEH chain overwritten

Vulnerable Code Pattern (Decompiled):

Listing 1. Vulnerable Function

I void FUN_1000aed0 (int param_1) {

wchar_t widePathBuffer[260]; // Fixed-size
buffer
4 // Build temp file path
GetTempPathA (ansiPathBuffer, 0x104);

// Convert to wide-char
8 int len = lstrlenA (ansiPathBuffer);
9 MultiByteToWideChar (0, 0, ansiPathBuffer,

-1, widePathBuffer, len + 1);
10
11 // No bounds checking string copy
12 wcscpy (widePathBuffer, parseFileName());
13
14 // Process folder
15 SHGetFileInfoA(...);

B. Primitive Transformation Chain

The exploitation leverages a chain of six primitives:

Primitive 1: Stack Buffer Overflow

The overflow is triggered by an unbounded wcscpy opera-
tion copying a Unicode string into a fixed-length stack buffer.
ANSI input is converted via Mult iByteToWideChar, dou-
bling payload size and amplifying overflow impact.

Result:

« Reliable stack corruption
o Overwrite of SEH chain
¢ Space for payload injection

Primitive 2: SEH Overwrite

Control-flow hijacking is achieved by overwriting the SEH
record. Because the exception is triggered before function
epilogue execution, stack canaries are bypassed.

SEH Record Overwrite:

NSEH: EB 06 90 90
SEH : O0x1006E534

=% SEH chain of main thread
Address |SE handler -~

|@812FB3C| Ftplogic. 18BEEE24 [
Fig. 2. Debugger showing the SEH buffer overwritten by our gadget address

SEH-based exploitation is optimal given the buffer’s dis-
tance from the saved return address and the absence of
SafeSEH and SEHOP on Windows XP.

Primitive 3: POP POP RET Gadget

A POP POP sequence in ftplogic.dll is used to
clean exception records parameters pushed onto the stack by
windows. RET is used to return to the nSEH location.

Gadget Address: 0x1006E534

POP EDI
POP ESI
RET

This module is loaded at a predictable address on Windows
XP and is not protected by SafeSEH.

Primitive 4: NSEH Short Jump

Execution is redirected using a short jump placed in the
NSEH field.

NSEH Value: EB 06 90 90

The jump skips the SEH pointer and lands in attacker-
controlled stack memory immediately following the SEH
record.

Primitive 5: NOP Sled

A 50-byte NOP sled is used to tolerate minor stack layout
variations and ensure reliable execution transfer into shellcode.

Primitive 6: Shellcode Execution

The final primitive executes position-independent shell-
code placed on the stack. The payload dynamically resolves
kernel32.dl1l and locates WinExec at runtime via PEB
traversal and export table parsing.

Payload Characteristics:

« Position-independent

o ASLR-resilient

o No hardcoded addresses

o Proof-of-concept command execution

Listing 2. Shellcode Structure

; Phase 1: GetPC (Find own

z address)
MOV EDX, ESP

89 E2
DA C1 FCMOVB ST (0), ST(1l) ; FPU
trigger
D9 72 F4 FNSTENV [EDX-0C] ; Save
environment
5 ; U state includes current EIP
6
7 ; Phase 32.d11 base
3 ; Walk PEB v
9 ; Traverse > 1ist
10 ; Identify kernel32.dll by name/position
11
12 oort Table
13 kernel32 base

algorithm)
(WinExec)

"nase 4

; : Execute Payload
19 XOR ECX, ECX

o PUSH ECX

b1 PUSH 0x6578652E
D PUSH 0x636C6163
b3 MOV ECX, ESP
b4+ PUSH 1

s PUSH ECX

b6 CALL EAX

L)

C. Dynamic API Resolution Rationale

Dynamic API resolution is used to ensure exploit portability
across Windows versions and configurations. Hardcoded func-
tion addresses are fragile due to variation across service packs
and incompatibility with ASLR-enabled systems. In contrast,
dynamic resolution identifies required APIs at runtime, allow-
ing the payload to remain position-independent and resilient
to system updates.

D. Exploit Constraints

The exploit is subject to several implementation constraints
imposed by the target environment. First, the FTP protocol
disallows the use of NULL, LF, and CR bytes, requiring
payloads and gadget addresses to avoid these values. Second,
Unicode conversion via MultiByteToWideChar doubles
the effective payload size, necessitating careful offset calcula-
tions but also increasing available overflow space. Finally, the
exploit relies on the absence of modern mitigations such as
ASLR, DEP, SafeSEH, and SEHOP, restricting applicability
to legacy Windows XP systems.

VI. EXPLOIT RESILIENCE ASSESSMENT

A. Reliability Analysis

Successful Execution Requirements:

o Windows XP SP3 (32-bit)

e« Rumba FTP Client 4.2 installed

o User connects to attacker server

o No antivirus interference

o Correct shellcode bytes

o Port 31337 available (not in TIME_WAIT)

B. Robustness Evaluation

1) SEH vs Direct EIP Overwrite: Why does the exploit
developer use an SEH overwrite instead of directly overwriting
saved return address for the vulnerable function?

SEH overwrite bypasses stack canary protection by ex-
ploiting the memory layout and execution timing. The /GS
compilation flag places a random canary immediately before
the saved return address, but the SEH record is positioned
before this canary. The overflow corrupts the SEH handler
without crossing the canary boundary, and when the overflow
triggers an access violation, Windows immediately invokes the
corrupted exception handler- before the function epilogue can
validate the canary. Direct return address overwrite would fail
because canary corruption triggers program termination before
the malicious address is used. On Windows XP, this technique
succeeds due to absent SafeSEH and SEHOP protections that
would otherwise validate exception handlers.

2) Dynamic vs Hardcoded API Resolution: Why use com-
plex PEB traversal instead of hardcoding WinExec address in
the shellcode?

Hardcoded Approach:

d

; Hardcoded (20 bytes, XP
MOV EAX, O0x7C86223E ; Win
3 PUSH "calc"
i PUSH 1
s CALL EAX

Dynamic Approach:

Dynamic

Why Dynamic is Better: Dynamic API resolution requires
approximately 280 additional bytes compared to hardcoded
addresses but represents the only viable approach for pro-
duction exploits. The technique provides portability across all
Windows versions (XP through 11) by locating kernel32.dll
at runtime, making it resistant to ASLR which randomizes
module addresses on modern systems. It survives Windows
Updates that reorganize function offsets, ensuring exploits
remain functional after system patches. Every DLL file has
an export table that can be used to find the address of the
loaded functions. The function name is hashed and compared
for faster finding of the required function. This approach has
become the universal standard in professional exploit devel-
opment. Frameworks like Metasploit exclusively use dynamic
resolution for this reason. The size overhead is justified by
the fundamental requirement for exploitation reliability across
diverse target environments, where hardcoded addresses would
fail immediately.

C. Edge Cases and Failure Modes

1) Edge Case 1: Socket Reuse (TIME_WAIT):
Scenario: Running exploit multiple times in quick succession.

lst attempt: Success (calculator spawns)

2nd attempt: Hangs indefinitely

Diagnosis: Port 31337 in TIME_WAIT state
4 Duration: 60 seconds until timeout

Likelihood: High during development/testing.
Fix Implemented:

ReuseAddr => 1 # A
sockets

Result: 100% reliability for rapid re-testing.

2) Edge Case 2: Antivirus Interference:
Scenario: Real-time protection enabled on the victim system.
Detection Points:

1) NOP sled signature (0x90 repeated 50 times)
2) Known shellcode patterns (calc.exe spawning)
3) Memory execution anomalies

Likelihood: High in enterprise environments.
Countermeasures:

e Polymorphic No Operations (NOPs): variable equivalent
instructions

o Encrypted shellcode with stub decoder

o Legitimate-looking payload (reverse shell instead of
calc.exe)

3) Edge Case 3: Network Connectivity Issues:

Scenario: Firewall blocks PASV data channel.

o Control channel (port 21) succeeds

« PASV negotiation succeeds

o Data channel (port 31337) blocked by firewall
o Malicious listing never reaches client

« Exploit cannot trigger

Likelihood: Moderate in corporate networks.
Mitigation: Use standard FTP ports (20 / 21).

D. Proposed Improvements

1) Automatic Socket Recovery:
Current Limitation: Exploit requires manual restart if socket
binding fails.

Proposed Enhancement:

I # Retry logic with exponential backoff
my S$max_retries = 5;
for my Sattempt (1l..Smax_retries) {
4 Spasvsock = IO::Socket::INET->new(...);

last if $pasvsock;
6 print "Retry Sattempt/$max_retries..
sleep (2 *x S$Sattempt);

An";

¢

Benefit: Improved reliability in rapid-fire testing scenarios.

2) Windows 7+ Bypass (ROP Chain):
Current Limitation: Exploit fails on Windows 7+ due to DEP,
ASLR, SafeSEH.

Proposed Enhancement: Implement Return-Oriented Pro-
gramming (ROP) chain:

1) Information leak to bypass ASLR

2) ROP chain calling VirtualProtect to mark stack exe-
cutable

3) Jump to shellcode after stack marked RWXp

Complexity: High (requires weeks of additional develop-
ment time).

Benefit: Modern Windows exploitation capability.

VII. PORTABILITY AND DEPLOYMENT

The exploit was evaluated across multiple Windows XP SP3
configurations to assess portability and deployment feasibility.
Because the vulnerability occurs in application-level code and
does not depend on heap layout, timing, or race conditions,
the exploit exhibits consistent behavior across tested environ-
ments.

Portability is primarily enabled by the use of SEH-based
control-flow redirection and position-independent shellcode.
The exploit relies only on modules loaded at predictable base
addresses and avoids hardcoded pointers by resolving required
system APIs dynamically at runtime. As a result, minor
environmental differences, such as service pack variations and
process memory layout, do not affect exploit reliability.

Deployment requires only network access to the vulnerable
FTP service and does not require authentication or user
interaction. The attack can be executed remotely using a single
malformed request, making exploitation feasible in real-world
settings where the service is exposed.

In modern environments, exploit portability is significantly
reduced due to the presence of ASLR, DEP, SafeSEH, and
SEHOP. Consequently, the exploit is limited to legacy systems
where these mitigations are absent or disabled.

VIII. MITIGATIONS AND MODERN PROTECTIONS

A. Why Windows XP is Vulnerable

Windows XP SP3 lacks multiple security mechanisms in-
troduced in later Windows versions:

TABLE I
WINDOWS XP VS MODERN SECURITY FEATURES

Protection XP SP3 Windows 7+
ASLR No Yes

DEP Optional ~ Mandatory
SafeSEH No Yes

SEHOP No Yes

Stack Canaries No Yes (/GS default)
CFG No Windows 8.1+

B. Windows 7+ Protections

This exploit does not work on Windows 7 or later due to
multiple overlapping protections:

1) ASLR (Address Space Layout Randomization):
Effect: Randomizes module load addresses on each boot.

Boot 1: ftplogic.dll at 0x10000000
Gadget at 0x1006E534 (works)
4 Boot 2: ftplogic.dll at 0x6F2A0000
5 Gadget at 0x6F30E534 (exploit fails)
6
7 Boot 3: ftplogic.dll at 0x73150000
8 Gadget at 0x731BE534 (exploit fails)

Bypass Required: Information leak vulnerability to deter-
mine runtime addresses.

2) DEP (Data Execution Prevention):
Effect: Marks stack memory as non-executable (NX bit).

Even if ASLR is bypassed and SEH exploitation succeeds,
the shellcode on the stack cannot execute. CPU raises an
exception when attempting to execute stack memory.

Bypass Required: Return-Oriented Programming (ROP) to
call VirtualProtect and mark stack executable.

3) SafeSEH:
Effect: Validates exception handlers against approved
whitelist. Windows checks if Ox1006E534 is a registered
exception handler. Our POP POP RET gadget is not in the
approved list. Handler rejected, program terminates.

Bypass Required: Find non-SafeSEH module or skip SEH
exploitation entirely.

4) SEHOP (SEH Overwrite Protection):
Effect: Validates entire SEH chain structure integrity.

SEHOP walks the chain and detects that NSEH
(0xEB069090) is not a valid pointer to another SEH record.
Chain structure validation fails, program terminates.

Bypass Required: Construct structurally valid SEH chain
(extremely difficult).

C. Application-Level Fixes

Proper remediation requires fixing the vulnerable code:

Listing 3. Secure Implementation

1 / /

VULNERABLE :
wcscpy (dest, source);

4 // FIXED (Option 1):
5 1if (wcslen(source) >= 130) {

6 return ERROR_BUFFER_TOO_SMALL;
7}

s wcscpy_s (dest, 130, source);
10 // FIXED (Option 2):

Il wcsncpy (dest, source, 129);
2 dest[129] = L’\0’;

13

4 // FIXED (Option 3):

15 size_t needed = wcslen(source) + 1;
16 wchar_t* dest = malloc(needed * sizeof (wchar_t)
)i

17 wcscpy (dest, source);

IX. CONCLUSION

This paper documents the complete exploitation of CVE-
2016-5764, a stack-based buffer overflow in Rumba FTP
Client 4.2 caused by unbounded wcscpy usage in FtpOcx.ocx.

Through systematic static and dynamic analysis, we demon-
strated reliable SEH-based code execution on Windows XP
SP3.

The vulnerability illustrates fundamental security lessons:
client-side attacks exploit user trust in network services, legacy
applications lack modern protections against well-known tech-
niques, and enterprise software dependencies create persistent
attack surfaces resistant to remediation. The stark contrast
between exploitation success on Windows XP and failure on
Windows 7+ demonstrates the effectiveness of layered de-
fenses (ASLR, DEP, SafeSEH, SEHOP) in raising exploitation
complexity.

While this specific vulnerability was patched in 2016, the
persistence of vulnerable installations highlights the broader
challenge of managing security in environments where busi-
ness continuity concerns delay critical updates. The exploita-
tion primitives documented here including the buffer overflow,
SEH overwrite, and dynamic shellcode resolution, remain
relevant for understanding both historical vulnerabilities and
modern mitigation requirements.

X. LESSONS LEARNED

A. Technical Insights

o Multiple Tool Necessity: Successful vulnerability analysis
requires both static (Ghidra) and dynamic (OllyDbg) ap-
proaches. Neither alone provides complete understanding.

o Debugging Strategy Matters: Kernel debugging, while
powerful for driver analysis, is inappropriate for user-
mode application vulnerabilities requiring interactive test-
ing.

o Portable Shellcode Design: Dynamic API resolution adds
complexity and size but provides essential portability
across Windows versions and update levels.

B. Methodological Insights

o Iterative Development: Exploit development requires in-
cremental progression: crash — control EIP — execute
NOPs — execute shellcode.

Infrastructure Matters: Seemingly minor issues (socket
reuse, VM performance) can significantly impact devel-
opment velocity and reliability testing.

Documentation Value: Systematic documentation of fail-
ures and solutions accelerates troubleshooting and pre-
vents repeated mistakes. There was a lot of trial and error
because there was no public documentation of this exploit
that we could find.

REFERENCES

[1] zombiefx, “Rumba FTP Client 4.2 - PASV Buffer Overflow (SEH),”
Exploit Database, EDB-ID: 12380, https://www.exploit-db.com/exploits/
12380, April 2010.

[2] MITRE Corporation, “CVE-2016-5764,” Common Vulnerabilities
and Exposures, https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2016-5764, October 2016.

[3] Umit Aksu, “Rumba FTP Client 4.x - Remote Stack Buffer Overflow
(SEH),” Exploit Database, EDB-ID: 40651, https://www.exploit-db.com/
exploits/40651, October 2016.

https://www.exploit-db.com/exploits/12380
https://www.exploit-db.com/exploits/12380
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5764
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5764
https://www.exploit-db.com/exploits/40651
https://www.exploit-db.com/exploits/40651

[4]

[5]
[6]

[7]
[8]

Microsoft Corporation, “Structured Exception Handling,” Microsoft De-
veloper Network (MSDN), https://docs.microsoft.com/en-us/windows/
win32/debug/structured-exception-handling, 2024.

Microsoft Security Response Center, “Understanding DEP as a mitiga-
tion technology,” Microsoft Technical Report, 2013.

FULLSHADE, “Bypassing a Null Byte POP/POP/RET
Sequence,” FullPwn Operations, Exploit Database
Documentation, https://www.exploit-db.com/docs/english/
47833-bypassing-a-null-byte-poppopret-sequence- whitepaper.pdf,
2019.

National Security Agency, “Ghidra Software Reverse Engineering
Framework,” https://ghidra-sre.org, 2024.

Oleh Yuschuk, “OllyDbg: 32-bit Assembler Level Analysing Debugger
for Microsoft Windows,” http://www.ollydbg.de, 2013.

https://docs.microsoft.com/en-us/windows/win32/debug/structured-exception-handling
https://docs.microsoft.com/en-us/windows/win32/debug/structured-exception-handling
https://www.exploit-db.com/docs/english/47833-bypassing-a-null-byte-poppopret-sequence-whitepaper.pdf
https://www.exploit-db.com/docs/english/47833-bypassing-a-null-byte-poppopret-sequence-whitepaper.pdf
https://ghidra-sre.org
http://www.ollydbg.de

	Introduction
	Bug Overview
	Vulnerability Summary
	Root Cause
	Attack Surface
	Exploitation Workflow
	Vulnerability Classification

	Infrastructure Setup
	Target Environment Configuration
	Debugging Environment
	Setup Challenges and Solutions
	WinDbg Kernel Debugging Unusable
	Socket Reuse (TIME_WAIT State)

	Primitive Analysis
	Exploitation Primitive Classification
	Minimal Triggering Input
	Stack Layout at Crash
	Primitive Capabilities and Constraints
	Debugger Walkthrough

	Exploitation Chain Analysis
	Achieving the Primitive
	Primitive Transformation Chain
	Dynamic API Resolution Rationale
	Exploit Constraints

	Exploit Resilience Assessment
	Reliability Analysis
	Robustness Evaluation
	SEH vs Direct EIP Overwrite
	Dynamic vs Hardcoded API Resolution

	Edge Cases and Failure Modes
	Edge Case 1: Socket Reuse (TIME_WAIT)
	Edge Case 2: Antivirus Interference
	Edge Case 3: Network Connectivity Issues

	Proposed Improvements
	Automatic Socket Recovery
	Windows 7+ Bypass (ROP Chain)

	Portability and Deployment
	Mitigations and Modern Protections
	Why Windows XP is Vulnerable
	Windows 7+ Protections
	ASLR (Address Space Layout Randomization)
	DEP (Data Execution Prevention)
	SafeSEH
	SEHOP (SEH Overwrite Protection)

	Application-Level Fixes

	Conclusion
	Lessons Learned
	Technical Insights
	Methodological Insights

	References

